
INTEGRATED OPTICS ANISOTROPIC

WAVEGUIDES AND DEVICESto

N FINAL REPORT

Thomas K. Gaylord

April 30, 1989

U. S. ARMY RESEARCH OFFICE

Grant Number: DAAL03-86-K-0157

Georgia Institute of Technology

ELECTE

S JAN2 2 1990

APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED.

90 01 22 13j4



THE VIEW, OPINIONS AND/OR FINDINGS CONTAINED IN THIS REPORT ARE
THOSE OF THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL
DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO
DESIGNATED BY OTHER DOCUMENTATION.



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unrc _q-l ft ipd________________________
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7&. NAME OF MONITORING ORGANIZATION

School of Electrical Engr. (if appicable)

Georgia Institute of Technolog] U. S. Army Research Office

k. ADDRESS (City, State, a"d ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

P. 0. Box 12211
Atlanta, Georgia 30332 - 0250 Research Triangle Park, NC 27709-2211

Ba. NAME OF FUNDINGISPONSORING lab. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATIONj (if applicab/e)

U. S. Army Research Office 1- 1-/LOr16- k0/,IS7
8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

P. 0. Box 12211 PROGRAM PROJECT TASK WORK UNIT
Research Triangle Park, NC 27709-2211 ELEMENT NO NO. ACCESSION NO

11 TITLE (Include Security Classification)

Integrated Optics Anisotropic Waveguides and Devices

12 PERSONAL AUTHOR(S) Thomas K. Gaylord

13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF 'REPORT (Yea, Month, a) 1 PAGE COUNT
Final | FROM IL TO 4-IL2 1 1989 April 30 3 48

16. SUPPLEMENTARY NOTATION The view, opinions and/or findings contained in this report are those

of 1he authgr(s).and should not be, constru d as. an fffical Department of the Army position,

17. COSATI CODES 1S. SUBJECT TERMS (Continue on reverse if necesary a"d identify by block number)
FIELD GROUP SUB-GROUP

integrated optics, birefringence, gyrotorpic, electro-optic

19 ABSTRACT (Continue on rvverse if necesary and identify by block number)

Many practical modulator materials include combinations of electro-
optically induced birefringence, optical activity, and/or Faraday rotation.
Thus, there is a need for a procedure to design and analyze devices
fabricated with materials exhibiting any or all of these effects.- In this
final report a simple procedure employing an extension of the general Jacobi
method is introduced for determining the properties of the two allowed
elliptical eigen-polarizations for an arbitrary direction of propagation as
well as the principal indices and axes of a general lossless, electro-optic,
and gyrotropic medium. The Jacobi method presented in this work is an

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
OUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. CODTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Aret Code) 22c OFFICE SYMBOL

DD FORM 1473, 4 MAR $3 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.LUNCLASSIF ED



UNCLASSIFIED
SECUTfY CLAIIIFICATION OF THIS PAGE

19. ABSTRACT (continued)

iterative procedure used for performing a unitary transformation to
diagonalize the Hermitian impermeability tensor. In addition, a complex
polarization variable is defined from elements of the unitary transformation
matrix to determine the ellipticity, azimuth angle, relative amplitude and
phase, and handedness of the two orthogonal elliptical polarizations. Also,
the phase velocity indices of refraction are readily calculated with simple
derived expressions. This procedure is numerically stable and accurate for
any crystal, external field direction, and direction of propagation.

Accession For
NTIS GRA&I
DTIC TAB C

Just ifoation

By .. .
Diatributioz

AVo,1a1'i11t Codes
-Avea an~d/or

Distj SP4uie1

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE



I. Introduction

In a recent publication,1 a straightforward, numerically stable method

for performing electro-optic effect calculations was presented. Simple

analytic procedures were developed for calculating the principal dielectric

axes and refractive indices of an electro-optic crystal of any crystal class

subject to an external electric field applied in a general direction. Simple

formulas were also developed for obtaining the two allowed eigen-

polarizations and their corresponding refractive indices for a general

direction of phase propagation. However, in addition to an external

electric field, the optical properties of a crystal may be affected by other

influences, internal or external, such as natural optical activity, an

internal or applied magnetic field, stress, and others. The optical

properties and the induced changes in them may be described by the relative

permittivity tensor [c] or its inverse, the impermeability tensor [n], where

[i] - []'- - [1/n 2 ] and n is the index of refraction.

The linear and quadratic electro-optic effects induce changes in the

linear birefringence of a crystal. These effects may be represented as

symmetric perturbations to the impermeability tensor. The allowed

polarizations remain linear, regardless of the direction of propagation.

However, some electro-optic crystals such as bismuth silicon oxide are also

optically active, thereby exhibiting natural reciprocal circular

birefringence. This physical effect is manifested as a rotation of the

linear polarization of the light upon transmission through the crystal.

Correspondingly, the eigen-polarizations are no longer linear but are, in

general, elliptical. Rotation of linearly polarized light may also be

induced by an external field. For example, an applied magnetic field may

induce nonreciprocal circular birefringence (Faraday rotation).



Furthermore, an external electric field may induce reciprocal circular

birefringence (electrogyration effect). Media exhibiting circular

birefringence, whether natural or induced, are referred to as gyrotropic.

The mechanisms giving rise to gyrotropy may be represented as imaginary

antisymmetric (Hermitian) perturbations to the impermeability tensor.

The two general questions to be addressed here are as follows: 1) Given

a crystal that is linear birefringent (natural or induced) and/or gyrotropic

(natural or induced), what are the principal refractive indices and

principal dielectric axes of the crystal? 2) What are the two eigenstates

(i.e., phase velocity indices and corresponding eigen-polarizations) for a

given direction of light propagation? The other given conditions are that

the crystal is lossless, linear, and homogeneous. The answers to the above

questions can be obtained by first determining the eigenvalues and

eigenvectors of the perturbed impermeability tensor. In addition, since the

eigen-polarizations are now elliptical in general, three pieces of

information are required to describe each state of polarization: azimuth

angle, ellipticity, and handedness.

Similar problems with the electromagnetic description of gyrotropy have

been addressed in the literature in terms of macroscopic theory2 -
9 and

quantum mechanics. 9 - 1 1 As an example of the former, a method to calculate

the eigenstates of a naturally optically active, electro-optic crystal by

diagonalizing the coupled-wave equations was presented by Yariv and

Lotspeich.3  As an example of the latter, a method using quantum.

electrodynamics to determine the eigenstates in optically active, linear

birefringent crystals was presented by Eimerl.10  The approach presented in

this paper is based on the macroscopic properties of the crystal. The

procedure introduced here employs an extension of the general Jacobi method,

a known, very accurate, stable, and simple numerical routine. Also, to



obtain a full description of the eigen-polarizations, a complex polarization

variable is used that maps the eigenvectors of the transverse impermeability

tensor into a complex polarization plane. The advantages of this method

over the others are that (1) no assumptions are required; (2) it applies to

any crystal class; (3) it applies to any field direction; (4) it applies to

any direction of light propagation; and (5) it is numerically stable,

accurate, and straightforward.

The constitutive equation will first be used to describe the optical

properties of a crystal. To provide a geometric interpretation of linear

and circular birefringence, the index ellipsoid and gyration surface will be

reviewed. Next, the procedure to address the given problem will be

introduced, which includes a brief overview of the eigenvalue/eigenvector

problem for Hermitian matrices, followed by a description of the extended

Jacobi method introduced in the present work and of the complex polarization

variable used to obtain the eigenstates for a given direction of phase

propagation. Finally, bismuth silicon oxide, an optically active, electro-

optic, electrogyratory material is analyzed to illustrate the simplicity and

accuracy of the method. Throughout this paper boldface will be used to

denote a vector and [.] to denote a matrix.

II. Constitutive Equation

The material properties (principal permittivities or refractive

indices) of the crystal are represented by the constitutive relation D -

[c]E, where [c] is the permittivity tensor of the medium. Disturbances to

the optical properties, which are typically very small in magnitude, may be

described by this tensor. They are commonly expressed in terms of the

inverse of the permittivity tensor, [f) - 1/o [ c ]- l/c 0 [1/n 2], where

f is the permittivity of free space.



For a homogeneous, lossless, and nongyrotropic medium the permittivity

(impermeability) tensor has only real components. Moreover, it is symmetric

for all crystal classes and for any selection of the dielectric axes. 1 2
-14

Therefore, it may be diagonalized, and in principal coordinates, the

constitutive equation is

[D] (1 00 )[]- 0 y0 (i)

with the principal permittivities on the diagonal. The symmetry of [c]

guarantees that a diagonal form exists given a correct choice of three

perpendicular principal axes (x,y,z) with respect to the crystallographic

axes.

If the medium is gyrotropic, the constitutive equation may be written

as13-15

D - [6]E + iceG x E - [E]'E, (2)

where [e] is the symmetric unperturbed permittivity tensor, i is F, and

G is the gyration vector which is uniquely defined for the mechanism

producing the circular birefringence. The vector cross product G x E in

Eq. (2) may be represented as the product of an antisymmetric tensor [G]

with the vector E. Thus,

D- 1[c) + io[G])E - [e]'E. (3)

Therefore, the permittivity tensor (el' is now clearly Hermitian as indeed

it must be due to thermodynamic arguments.
1 3 - 1 4

The constitutive equation may also be written as

E - [c]'-'D - [n]'D - (l/c){[i] - i[Y,][G)[r]}D. (4)



From Eq. (4), the antisymmetric (imaginary) part of ['7' is

0 - 7 GZ 17 , GY

-In -1]Gf1 n- 7nG n ZG (5)
i-nX nZ GY 1Y nZ GX

An important point is that the imaginary part of []' has no effect on the

principal dielectric axes and indices of the crystal. The real part of [v]'

is real and symmetric.

A number of the various types of influences, both natural and induced,

on the optical properties are now described.

A. Dielectric Properties with No Fields Applied

1. Natural Linear Birefringence

The optical symmetry of a crystal is represented by the permittivity

(impermeability) tensor. 12 - 14  If all diagonal elements are equal, then the

crystal is isotropic. If ex - e Y cz' then the crystal is uniaxial. If ex

f Y Vd CZ r C. the crystal is biaxial. Therefore, both uniaxial and biaxial

crystals exhibit natural linear birefringence; e.g., c. - C Y 0.

2. Natural Optical Activity

In general, the macroscopic properties of a medium depend on the

temporal and/or spatial variation of the electromagnetic field. For the

case of natural optical activity, the properties are influenced by spatial

dispersion, the dependence of [c] on the magnitude and direction of k at

fixed frequency.4 .13 
1 9 The macroscopic dipole moment per unit volume of the

medium at a given point depends on the field at and near that point. In the

optical frequency range, the effects of spatial dispersion, in general, are

small and are characterized by the first power of a/lA (<<), where a is on

the order of the lattice constant and A is the wavelength of the light in



the medium. Therefore, to first order, the constitutive equation is
1 4 - 1 5

,
1 7 1 8

D, - CJE i + -,j (BEJ/8xj) - c' JEJ (6)

and

e - f'f (w,k) - ej(w) + i7y~ 1 (w) k1 , (7)

where eij(w) is the permittivity tensor without optical activity and 7yjj(W )

is a third-rank real antisymmetric tensor in the indices i and J, resulting

in e0j being Hermitian. The second term can also be represented by G x E,

where G is the gyration (axial) vector.
13 - 1 5

The displacement vector D rotates in a helical fashion about the

wavevector k, so G is parallel to k and the components of G are

functions of the direction cosines of k. The sense of rotation bears a

fixed relation to the direction of propagation as shown in Fig. la. If a

linearly polarized input light wave is transmitted through an optically

active crystal and then is reflected back through the crystal, the net

rotation of the polarization is zero. Therefore, natural optical activity

is a reciprocal effect.'' 3

By defining the direction of k in spherical coordinates (Ok36 k)' the

components and magnitude of G are
1 3

,
1 7

GX  - Gsin9 k cosk, Gy - Gsin k sink, G y - Gcos k
(8)

IGI - G - g,,sin2 k COS2ok + g22 sin2 6 k sin 2k + g 3 3 cos 2 ok

+ 29 1 2 sin2 9k sin4 k coso k + 
2 g13sinok cosok cosok

+ 2 92 3 sin8
k cosek sinok,

where glj are the components of the gyration tensor. Only noncentrosymmetric

crystals can have natural optical activity. Table I provides a summary of

the gyration tensors for all crystal classes that exhibit optical activity.
13



B. Dielectric Properties with External Fields Applied

1. Linear Electro-Optic Effect

An electric field applied in an arbitrary direction to a crystal

lacking a center of symmetry produces a change in the coefficients (1/n2 ) 1 due

to the linear electro-optic effect according to

-~/ 2) r i - 1,...,6 (9)
i 3 j - x,y,z - 1,2,3

where rij is the ijth element of the linear electro-optic tensor in reduced-

subscript notation. 13,20 In matrix form Eq. (9) is

A(/n2) r1 1  r 1 3  E

r21 r22 r23 E
A(l/n 2 ) 3  - r31 r32 r 3 [0

)4 4 1 r4 2 r4 3
/A(l/n2 )/ r r r 3
A(l/n 2 )5 r5 1 r5 2 r 5 3

n(i/n2 6 J .r 6 1 r6 2 r6 3

For a noncentrosymmetric crystal, the new impermeability tensor in the

presence of an applied electric field is, in general, no longer diagonal in

the original axes system. The perturbed impermeability tensor is

- t,2 (1/ ). 1/n2 2)) 6 e(1/n2), (11

[1/n2] - A(/n2) 1i/22n2)2 (l/n2)4 (I )

A(I/n 2) A(l/n 2)4 1/n3
2 + A(l/n 2 ) 3 •

However, the field-induced perturbations are real and symmetric, so the

symmetry of the tensor is not disturbed. These changes to [1/n 2 ] have the

effect of changing the principal axes and indices of the crystal. The

electro-optic tensor for all crystal classes is summarized in numerous

texts. 13,15 All optically active crystals are also electro-optic, but the

converse is not true.



2. Electrogyration Effect

An applied electric field may not only induce linear birefringence, but

in many cases,2 1  it may also induce circular birefringence through the

electrogyration (EG) effect. Considering only first-order spatial

dispersion, the gyration tensor is
2 1 -2 3

gi - gij + Pijk E k (12)

where gij is the gyration tensor with no applied field and Aijk is the third-

rank electrogyration tensor, which has the same symmetry as the electro-

optic tensor. The second-rank tensor ikEk alters gij in the same manner as

Eq. (9) alters the impermeability tensor in Eq. (11). The net result is a

change in the magnitude of the gyration vector G as found by Eq. (8) and

therefore, a change in the specific rotation (polarization rotation per unit

thickness) of the medium. The EG effect may be viewed as induced optical

activity, a reciprocal effect. This perturbation changes the impermeability

tensor in the same manner as optical activity, that is, producing Hermitian

off-diagonal elements as in Eq. (4) rather than the real symmetric off-

diagonal elements of Eq. (11).

3. Faraday Rotation

In a Faraday active medium, the macroscopic properties are influenced

by frequency dispersion caused by an applied magnetic field.4 '8 13-1 4 ,2 4-27

The field creates a relative shift between the phase velocity indices of

refraction of the two allowed eigen-polarizations, inducing circular

birefringence. The constitutive equation is

D - [c]E + ieoB x E, (13)

where [c] is the unperturbed permittivity tensor and is the



magnetogyration constant of the medium. The real part of the impermeability

tensor is symmetric in B, and the imaginary part is antisymmetric in B.1 4

Since only first-order effects are considered, the real part of the tensor

remains unchanged. In this case, the imaginary part is represented by the

gyration vector that Is proportional to B; i.e., G - OB. Thus, the

components of G are functions of the direction cosines of B (OB,eB), rather

than those of k. That is,

G, - OBsin6B cosO, Gy - OBsinOB sin43 , Gz - IbBcosO . (14)

The magnitude of G is merely the product of ; and the magnitude of B. For

Faraday rotation, the sense of rotation bears a fixed relation to B, as

shown in Fig. lb. The eigen-polarizations are preserved upon reflection so

that the net rotation is doubled. Thus, Faraday rotation is a nonreciprocal

effect.4,11.13

C. Combined Effects

If, for example, a lossless, biaxial, and optically active crystal is

subject to an applied electric field, then the impermeability tensor is

altered by Hermitian perturbations and is
5 '1 3 - 1 4'2 4

21, 1X 17:ic Y 1
[1/n2 ]' " [' - Jxy 1 Y 7y: (15)

Vxz t7yz 17zz

where j, i o J, are complex and n,, are real. As stated previously, the

imaginary parts of the off-diagonal elements do not affect the principal

axes or indices of the crystal. They affect only the state of the allowed

polarizations and the phase velocity indices. The eigen-polarizations are

now elliptical, in general, rather than linear as with the electro-optic

effect. An Hermitian matrix may be represented by a quadratic surface in



complex space. In real Cartesian space, however, only the real part of

[q]', which is symmetric, contributes to a quadratic surface (ellipsoid).

Geometric surfaces which represent optical properties of the crystal are

discussed in the next section.

III. Geometric Approach

A. Index Ellipsoid

The index ellipsoid is a construct whose geometric characteristics

represent the phase velocities and the directions of electric displacement

vibration of the two allowed plane waves corresponding to a given optical

wavevector direction in a crystal. The general index ellipsoid for an

optically biaxial crystal is expressed in Cartesian coordinates as
12 13

(x2/nx 2 ) + (y 2 /nY2 ) + (z2/nz2 ) - 1 (16)

where n., n Y and nz are the principal refractive indices of the crystal.

Since the permittivity (impermeability) tensor is positive definite, the

surface is always an ellipsoid. If n. - n Y , the surface becomes an ellipsoid

of revolution, representing a uniaxial crystal. An isotropic crystal is

represented by a sphere (degenerate ellipsoid) with the principal axes

having equal length. These surfaces are shown in Fig. 1 of Ref. 1. Also,

shown are the optic axes for each crystal symmetry.

The eigenstates for an arbitrary direction of propagation in a crystal

are found in the elliptical cross-section perpendicular to k which passes

through the origin of the index ellipsoid, as shown in Fig. 2. If the

optical properties are not disturbed, the major and minor axes of the cross-

section ellipse represent the two allowed orthogonal linear vibration

directions of D (eigen-polarizations) for that particular direction of

propagation. The lengths of these axes correspond to the the respective



phase velocity indices of the allowed polarizations. They are, therefore,

referred to as the "fast" and "slow" axes. As with the principal axes and

indices of the crystal, these eigenstates, in general, are affected by real

symmetric perturbations, (for example, the electro-optic effect), to the

impermeability tensor. However, the antisymmetric perturbations affect only

the eigenstates (the eigen-polarizations and phase velocity indices). The

major axes of the cross-section ellipse correspond to the major axes of the

allowed polarizations in this case.

B. Gyration Surface

The geometry of the index ellipsoid provides only partial information

about the eigenstates if the allowed polarizations are not linear. In this

case the ellipsoid can be used to determine only the orientation of the

allowed elliptical polarizations but nothing on the properties of optical

rotation for a given wavevector direction. The gyration surface, however,

may be used to illustrate the directional dependence of optical rotation in

a gyrotropic crystal. For optically active crystals the surface is

constructed from the gyration tensor [g] in the same way that the index

ellipsoid is constructed from the impermeability tensor. 17 That is, the

distance from the origin to any point on the surface is given by

G - gJ k, kJ, (17)

where ki and k are the direction cosines of the wavevector k. Equation (17)

is the directional magnitude of the gyration vector, C - IG!, as given by

Eq. (8). Since the gyration tensor is not necessarily positive definite,

the surface may have a variety of forms. Shubnikov 17 provides a complete set

of all possible surfaces for isotropic, uniaxial, and biaxial crystal

classes which exhibit optical activity. For example, Fig. 3 is the gyration



surface for right-handed quartz (class 32) which is positive uniaxial and

optically active. The first two diagonal elements, g11 - 922' are negative,

and g3 3 is positive. The surface is given by G - -Ig1 1Isin2 0ko + g3 3 cos 2ko'

where 8ko is the angle between the optic axis and k. Therefore, optical

rotation along the optic axis is right-handed and is denoted by the white

surface. However, propagation perpendicular to the optic axis gives optical

rotation in the opposite direction and is denoted by the dark surface.

There is no optical rotation (C - 0) for propagation directed -56 ° from the

optic axis, as determined by the measured quantity g1 1/g3 3 - 0.45, and the

eigen-polarizations are linear.

For Faraday active crystals a gyration surface may also be constructed.

As stated before, the sense of optical rotation bears a fixed relation to

the direction of the applied magnetic field B. Maximum rotation is

achieved for propagation parallel and antiparallel to the applied magnetic

field. If propagation is in a direction inclined to B, the degree of

optical rotation will decrease as cos kB, where ekB is the angle between k

and B.14 Therefore, Fig. 4 is a representation of the gyration surface for

this type of crystal.

IV. Analysis

The problem is to determine the principal axes and indices of the

crystal and the two allowed orthogonal eigenstates of polarization (Di and

D2 ) and the corresponding phase velocity indices (n, and n2 ) for a general

wavevector direction and a general external field. The solution to the

problem lies in determining the eigenvalues and eigenvectors of Eq. (15).

The method chosen to address this problem involves diagonalizing the matrix

using an extension of the general Jacobi method. For Hermitian matrices,

the eigenvalues are real. The eigenvectors, on the other hand, are complex



in general. Thus, additional information is required to describe the

general state of the eigen-polarizations (the complex elgenvectors). For

linear polarization, only the orientation (azimuth angle) in the plane

transverse to k is required. For elliptical polarization, the ellipticity

and handedness as well as the azimuth angle must be determined.

Furthermore, for linear polarization, D oscillates in a plane in one fixed

direction perpendicular to k. If D is elliptically polarized, then it no

longer oscillates in a plane but rather propagates in a flattened helix

about k, as shown in Fig. 5. A full description of the eigen-polarizations

is obtained by using a complex polarization variable.

A. Principal Axes and Principal Refractive Indices

A detailed description of a procedure to determine the new principal

axes and indices of a crystal subject to real symmetric perturbations is

given in Ref. 1. That approach employs the general Jacobi method, and it is

known to be an accurate, numerically stable, and simple routine for

diagonalizing real symmetric matrices. The routine is iterative, and it

involves the calculation of an elementary plane rotation angle at each step

to zero the largest off-diagonal element. Also, the method allows for

consistent labeling of the new axes; a global rotation axis and a global

rotation angle are calculated from the resulting cumulative orthogonal

transformation matrix. To find the principal axes and indices of a crystal

with Hermitian perturbations to its optical properties, as given by Eq.

(15), the same procedure is performed but only on the real part of the

matrix. The authors refer the reader to Ref. 1 for this part of the

analysis.

B. Eigenstates of Polarization and Phase Velocity Indices

The eigenvalue problem for Hermitian matrices is addressed by a unitary



transformation, [a][n'f'[a]B - [A], where [a] is the unitary transformation

matrix ([a]B - [a]-'), [n]' is an Hermitian matrix, [A] is the resulting

diagonal matrix of real eigenvalues, and H denotes complex conjugate

transpose. As suggested by Wilkinson,2 8 a form of the unitary matrix that

can be used is

[a] - [ cos o e sin ']
I-e5B sine coso J (18)

This matrix has the effect of transforming a system from Cartesian

coordinates to a complex (helical) coordinate system.2 9 There are two

parameters, 4' and B, to determine. For real symmetric matrices B - 0, and 0

represents the elementary Cartesian plane rotation angle. Using the

expression for a unitary transformation, a set of relationships was derived

(with the unitary matrix of Eq. (18)), which results in a version of the

general Jacobi method extended to Hermitian matrices. The two unknowns 0 and

B are calculated at each iteration step. With additional algebra, the

simple expressions in the Appendix were obtained for updating the elements

of [n]' as the diagonalization process proceeds. The parameter B was

determined to be the argument of the off-diagonal element n7j, i P j, and is

the required value for zeroing that element with a rotation in the (i,j)

complex plane. These formulas reduce to those of the general Jacobi method

for real symmetric matrices.1  The Jacobi method using these modified

formulas was programmed and tested. The results for several test matrices

were found with virtually zero error. These results were often more

accurate than those obtained with the commercial IMSL30 routine, EIGCH.

To find the eigenstates for a specific direction of propagation k,

a real orthogonal transformation must first be performed on the Hermitian

matrix [n]' to place the problem in a coordinate system of k. The



wavevector direction is specified by the spherical coordinates ( ,k) in the

original (x,y,z) coordinate system. A new coordinate system (x'',y'',z'')

is defined with z'' parallel to k and x'' lying in the (z,z') plane. The

transformation to the (x'',y'',z'') system is produced first by a rotation

k about the z-axis followed by a rotation Pk about y'' as shown in Fig. 6.

This transformation is described by

X'' - x cosak cosok + y CoSok sinok - Z sin k

y'' - -x sinok + y cosok (19)

Z'' - X sinok cosok + y Sinfk sink + Z coso k .

The transformed tensor []'' in the (x'',y'') plane is

L *Xy 'Y 7z' (20)

where

17'' - (qXX Cos 2k + 7yy sin2 k) COS 26k + 17 sin28k +

2xyr Cos
2 8k COS~k sinok - 2 cosOk sin ok (vxzrCoSok + 1yzr sinok),

17 -- 7xxsin2 k + 17yyCOS2 k -- 2%yr COSk ' (21)

'7x "of (nyy - 17XX)Cosak COS~k sin~k + COSOk (17.y COS 2o -k 17y sin 2ok )

+ sinOk (, 5 in~k - 17*yz COSk) " 97 yx

and n,,r denotes the real part of qlj" Therefore, the Hermitian property is

preserved. The third row and column can be neglected, since the vibration

direction of the eigen-polarizations is transverse to k. Next, the phase

velocity indices of refraction are easily determined using the relationships

in the Appendix (with a slight modification) to diagonalize the 2 x 2 matrix

of Eq. (20). The required rotation in the complex (x'',y'') plane is

0- Tan-1(2 sgn(q xyr ''). Y I/( - 17 yy )), (22)



where 1.1 denotes magnitude and sgn(nxy r ') is the sign of 'yr ' The phase

velocity indices are

- (1 ' Cos 2  4 + 17 Y ' s in 2 4 + 2 s gn ( n7 y r p ) 1 1 1 co s -D s i n fl (23)nI {xx co2 yy' '' c s sn} -

n 2 - 07.. ''sin 2  + 17YY 'cos 2  - 2 sgn(qx, r )l17I.''cosO sinO -h

The corresponding states of polarization are just the rows of the 2 x 2

unitary transformation matrix of Eq. (18):

D, - (cosO e± isinD]
(24)

D2 - [-e' isinO cosO]H,

where B - Arg(1xy''). These states are the left eigenvectors of [n]''; the

right eigenvectors are the complex conjugate transpose of Eq. (24) and are

- r cosD - -e sin(2

e- iB sinc , cost J. (

The orthogonality relation, D1 .D2* - 0, is satisfied. From Eq. (23) if n 1 <

n2 , as shown in Fig. 7, then D is the "fast" wave and D is the "slow" wave.

If n1 > n2 , then the "fast" and "slow" waves are reversed.

Now the full description of these eigen-polarizations must be

determined; i.e., azimuth angle, ellipticity, and handedness. They have the

same ellipticity but opposite senses of rotation with orthogonal major axes.

First, the azimuth angle or direction of the major axes for DI and D2  is

easily obtained from Eq. (22) as follows. The orthogonal transformation

performed on [7]' can be visualized in terms of the index ellipsoid. The

cross-section ellipse transverse to k is found by taking only the real part

of the transformed tensor [n]'', giving X''TRe([7)'')X' ' - , or



txx'I x 1r2 + IPYy,,,,2 + 2 7 r''X''y'' -1 , (26)

where Re([fl'') is the real part of [n]'' and X'' - [x'' y,,]T The azimuth

angle A8 for Di is the angle in the real Cartesian (x'',y'') plane required

to diagonalize Re(f ]''). It is

,6 - Tan- [2 7.y /(v ' - 17y ] (27)

This expression is the same as Eq. (22) if the numerator 2sgn(xyr' ') T. 0

is replaced by 2xyr tf. The azimuth angle for D2 is just )92 - 181 + x/2. The

angles P, and '2 define the orthogonal semi-axes directions (x''' and y''' in

Fig. 7) of the cross-section ellipse of the index ellipsoid. If Im(0 '')

were zero, the lengths of the semi-axes would correspond to the phase

velocity indices for the two linear polarizations. These indices would be

calculated from Eq. (23) with P, rather than 4Z.

The ellipticity and handedness of D, and D can be found through the

use of a complex polarization variable (CPV) X.3 1 These eigen-polarizations

are in the form of a two-component Cartesian Jones vector orthogonal to k:

LD J IDyl e 6  " (28)

The form of the CPV is then X - rexp(iA6), where r - IDY/D.1 and A6 -

6Y x. It performs a bilinear transformation from the complex (x'',y'') plane

to polarization space, shown in Fig. 8, where points in the complex X plane

represent polarization states. This plane, in fact, maps directly onto the

Poincare' sphere. The equator of the sphere is the horizontal real axis of

linear polarizations, and the north and south poles are the points R and L

of the right- and left-circular polarizations, respectively. From D1 , the

CPV is



x, - e iBtant, (29)

and from the orthogonal state D2,

X2 - -l/xlo - -e- Bcoto. (30)

Relationships between the CPV X, and the azimuth angle P, and ellipticity

angle , are given by Azzam and Bashara 3 1 as

tan2p1 - 2Re(x1 )/(l - JX1 12)
(31)

sin2 1 - 2Im(x1 )/(l + JX1 12).

In terms of the impermeability tensor elements and the rotation angle o, the

azimuth angle fi1 was given in Eq. (27), and the ellipticity angle el was

derived to be sin2C 1 - -(Im(n,, ')/I y1) sin2t - -sinB sin2t or

el - - sin-1 (sinB sin2t). (32)

The ellipticity is given by tan 1 . Furthermore, the relative amplitude of

the orthogonal components of Di is defined as ri - tan t, and the relative

phase is AS,- -Arg(,i ) - -B.

The handedness of the polarization is determined by the sign of the

relative phase. If A6 is > 0, then the elliptical polarization is left-

handed. If AS < 0, then the polarization is right-handed. And if AS - 0 or

mr, m - 1,2,3 .... then the polarization is linear.

For the orthogonal polarization state, the parameters P2' f2 1 r2 9 and AS2

for x2 are
31

P2 - f1 + w/2, e2 - 1' r. - coto, A62 - - + AS1 . (33)

The orthogonality condition for X, and X. is X, x2 - -1. Therefore, in the



process of diagonalizing a Hermitian matrix, the relative phase 6 and

ellipticity angle are changing iteratively. In the case of a real

symmetric matrix, the process is interpreted as a rigid body rotation.
1

The advantages of this method include the following: (1) It is accurate

and stable for all crystal classes; (2) Stable orthonormal eigenvectors are

found simultaneously with the eigenvalues; (3) The unitary transformation

matrix is easily determined by elements of the perturbed impermeability

tensor; (4) All descriptive information about the eigen-polarizations of a

crystal for a given k is obtained from the unitary transformation matrix

with simple formulas; and (5) The combined effects of real and Hermitian

perturbations to the impermeability tensor can be straightforwardly handled.

V. Example: The Sillenite Crystal Class

A cubic sillenite crystal of class 23 is examined to illustrate the

ease and accuracy of the method just described. This crystal class is being

widely investigated for applications in dynamic real-time holographic

interferometry and spatial light modulation.2 3 ,3 2 The class includes bismuth

silicon oxide (BSO), bismuth germanium oxide (BGO), and bismuth titanium

oxide (BTO). These crystals are electro-optic, optically active,

electrogyratory, piezoelectric, and elastooptic. The electro-optic effect,

optical activity, and electrogyration effect combined may strongly affect

the polarization in these crystals. BSO is examined to illustrate these

influences on the eigen-polarizations.

Two principal configurations of BSO, both transverse, are used for

volume holography. One of them is shown in Fig. 9.32 An external electric

bias is applied in the [i T 0] direction, and the direction of light

propagation is [J 1 0] or (4k'k) - (135°,900). In the (x,y,z) coordinate

system, the unperturbed impermeability tensor for this cubic isotropic



crystal is

[i/nZ] - [/no0 2 (34)0 0 I/no2

where no is the principal refractive index of the crystal. The index

ellipsoid is a sphere. The gyration tensor for natural optical activity is

a function of the given applied electric field and wavevector directions and

is

[ 1  go %1 E1 1
[g), 11 %1X (35)

where %1 is the electrogyratory coefficient. The gyration surface changes

from a sphere to the surface (from Eqs. (8) and (17)),

G' - g1l - % %1 E sinek cosek (sinok + CoSok), (36)

where EX - E - -//2 E, and E is the magnitude of applied field. If E - 0,

then G' - G - g11 , which is a sphere. The perturbed gyration surface is

shown in Fig. 10. Note by Eq. (36) that for the given field ([1 1 0]) and

wavevector ([T 1 0]) directions, the effect of electrogyration is not

present. Therefore, with the electro-optic effect, optical activity, and

the given direction of propagation k taken into account, the tensor becomes

1/n02 0 I/,/2(-r4 E- ig 11 /no 4)]

[07' - 1/n.2  1/./2(-r 4 1 E - igl 1 /n. 4

[I/T(-r 41E + ig 1 1 /n. 4) i/.J(-r 41E + 1g11/n 41 I/no 2

(37)

where GX - -C Y -- -i/)/ g11. The new orientation of the index ellipsoid is

obtained by applying the general Jacobi method as described in Ref. I to the



real part of Eq. (37). The crystal is now biaxial, and the principal

indices and axes are

n , - 2.52996 x' - [1/2 1/2 i/4 ]T

flY, - 2.53 y' - [-l /dF2 01 T (y'll k) (38)

n., - 2.53004 z' - [1/2 1/2 i1?]T.

To determine the eigenstates of the crystal for the given k, the entire

[7]' tensor of Eq. (37) must be transformed to the (x'',y'',z'') coordinate

system by Eqs. (19). The resulting 2 x 2 matrix in the (x'',y'') plane is

given by

[1]' - [ 1/n.2  (-r4 1E + ig1 1/n
4 )] (39)

(-r41 E - ig,/noi) 1/n0
2  ,

and x'' - -z ([0 0 1]), y'' - -I// x - i/T5 y ([1 1 0]), and z'' -

-11T x + /T y ([1 1 0] II k). The cross-section ellipse is, by Eq. (26),

1/n0
2 (x,,2 + y,,2 ) - 2r41E x''y'' - 1. (40)

The azimuth angle is found by placing this cross-section in principal

coordinates, i.e., by diagonalizing the real part of Eq. (39). This angle

is fl - hTan-'(-2r 4 1E/(l/no
2 - 1/n0

2 )) -45* Therefore, the axes of the

cross-section ellipse are along x''' - [1/2 1/2 -i,/F1 T and y''' -

[-1/2 -1/2 -lI/T]T . Numerical values32  for the various parameters are no -

2.53 and r41 - 4.41x10-12 m/V at a freespace wavelength of - 0.6328 pm. From

these numbers the lengths of the principal axes are nX,,, - no - hno3r4 1E -

2.52996 and n7,,, - no + hno3r41E - 2.53004 for a field magnitude of 106 V/m.

The phase velocity indices are found by diagonalizing the entire matrix

[i]'' of Eq. (39). The required rotation angle is



4'- Tan- (2 sgn(nxy r )I. I/(l/no - 11n 2)) - -45 ,  (41)

and In Y''j {(r 4 1 E)2 + (g1,/no
4 )2)h. The constant g11 is calculated from the

measured specific rotation of p - 21.4"/mm (Ref. 32) which is equal to

tfg11/n 0 . Therefore, g1 1 /no 4 - )p/rno3 - 2 6618 x 10"', giving 1 xy I"

2.6621xl0"4 . Optical activity dominates the magnitude of the off-diagonal

element ,y The phase velocity indices are found from Eqs. (23) to be,

ni - (1/no 2 + Ix iIr}_ - 2.52785 (fast wave)
(42)

n2 - (1/n.2 - I )- h} - 2.53216. (slow wave)

The circular (elliptical) birefringence is then Anc - n2 - ni - 0.0043111.

Without the electric field applied, the indices are n1 , - 2.52785 (- n) and

n2, - 2.532158 (< n2 ), giving a circular birefringence of Ant, - n., - n1 , -

0.0043080. Therefore, the electro-optic effect only slightly enhances

circular birefringence. The corresponding eigenvectors are found from Eq.

(25) to be

D, - [_ 1/J17 1J D2 - [(0.01656 - i0.99986)1/T (43)
(0.01656 + i0.99986)/ 2], 1I./ ,

and B - Arg(%Y'') - -89.0508 °.

The CPV X, is -exp(-iB). From Eq. (31), the azimuth angle is fi- -45°'

which agrees with the angle obtained before. Also from Eq. (31), the

ellipticity angle is sin2t, - Im(x1 ) - sinB, which is equal to

-Im( . '')/In.Y.'I sin2' - -sinB sin20 - sinB from Eq. (32) for 4 - -45° .

Therefore, Eqs. (31) and (32) are consistent. The ellipticity angle is

then -44.52541 ° and the ellipticity of the polarization is tanC1 - -0.98357 °

(almost circular polarization). The relative amplitude is r, - 1, and the

relative phase between D.1 and D.1 is AS1 - +89.05*. The corresponding point



on the complex X plane in Fig. 8 is on the unit circle at the phase angle of

+89.05 °. Since A61 > 0, then D, is left-handed polarization, and n, - nL is

the corresponding index. Therefore, Di corresponds to the fast wave.

For the orthogonal polarization D2, the CPV is X2 - exp(-iB). The

azimuth angle is +45*, and the ellipticity angle is -el or +44.525410 for an

ellipticity of 0.98357. The relative amplitude is r2 - 1, and the relative

phase between D 2 and Dy2 is -90.95
°. The corresponding point on the complex X

plane in Fig. 8 is on the unit circle at the phase angle of -90.95 ° . Since

the AS2 < 0, D2 is right-handed polarization, and n2 - r. Therefore, D2

corresponds to the slow wave.

Finally, an additional note is that the phase retardation, r, between

Di and D2  for a given crystal thickness d may be calculated from the

circular (elliptical) birefringence &n It is given by F - 2x/A An d and in

general, includes the effects of both the natural optical activity and the

external electric field (e.g., electro-optic and electrogyration effects).

VI. Conclusion

A straightforward systematic procedure for performing electro-optic

effect calculations was developed and presented in Ref. 1. That approach,

which employs the general Jacobi method, can be used to analyze propagation

in electro-optic materials in any crystal class for an arbitrary electric

field direction and arbitrary wavevector direction. The properties of the

impermeability tensor were exploited to arrive at simple, stable, and

accurate expressions for determining the principal axes and indices of a

crystal and the eigenstates (phase velocity indices and eigen-polarizations)

for a given direction of propagation k.

In this paper that procedure has been extended to gyrotropic crystals.

External (or internal) influences, such as optical activity, electrogyration



effect, and Faraday rotation may now be included, singly or together.

inese circular birefringence effects are more complicated and, in general,

produce elliptical eigen-polarizations. The extended method requires a

unitary transformation from a Cartesian coordinate system to a complex

helical coordinate system to determine the eigenstates for a given direction

of propagation. Using a unitary matrix suggested by Wilkinson,2 8 a set of

formulas has been derived which results in an extended version of the

general Jacobi method applicable to Hermitian matrices. These relationships

are given in the Appendix. Furthermore, a complex polarization variable was

introduced to quantify the connection between the elements of the perturbed

impermeability tensor and the eigen-polarizations. This new procedure

reduces easily to the less complicated case where the electro-optic effect

alone is present.

More specifically, two questions were posed and answered in the present

work:

1) Given a crystal that is linear birefringent (natural or induced)

and/or gyrotropic (natural or induced), what are the principal

refractive indices and principal dielectric axes cf the crystal?

2) What are the eigenstates for an arbitrary direction of light

propagation?

The step-by-step procedure introduced in this paper is summarized as

follows:

1) The general Jacobi method as described in Ref. I is applied to the

real part of the perturbed impermeability tensor [i]' to determine

the principal indices and axes of the crystal.

2) A real orthogonal transformation is performed on [,]' to place the

tensor in the coordinate system of k (x'',y'',z''), giving [,]''

3) Using formulas from the Appendix, the eigenstates for the given k



are obtained.

4) From the eigenvectors of [q]'' a complex polarization variable

(CPV) is defined. Using the CPV, the descriptive properties of

the eigen-polarizations, i.e., azimuth angle, ellipticity and

handedness, are determined in terms of the elements of 19)''.

To provide a geometric interpretation of linear and circular birefringence,

the index ellipsoid and gyration surface were used.

Finally, the sillenite crystal class was examined to illustrate the

ease and accuracy of the extended method. Specifically, bismuth silicon

oxide (BSO) was analyzed in a principal configuration to show the effects of

its natural optical activity together with the simultaneous influences of an

applied electric field (through the electrogyration and electro-optic

effects) on the eigenstates of the crystal for a given k. Example

numerical results were presented.



Appendix: Complex Plane Rotations

The general Jacobi method is modified here for diagonalizing a 3 x 3

Hermitian matrix. This iterative procedure involves a unitary

transformation from a Cartesian to a helical coordinate system. As a quick

reference the following relationships for the rotation angle, the unitary

transformation matrix, and the updated impermeability elements are provided

for rotation in each of the three complex planes. These expressions are

derived from the coordinate transformation law for second-rank tensors. The

rotation angle in the complex (x,y) principal plane is denoted by 0, in the

complex (x,z) principal plane by 0, and in the complex (y,z) principal plane

by 0. The impermeability tensor is represented as the Hermitian matrix H.

1. Rotation in the complex (x,y) plane.

The rotation angle 4 required to zero the H12 element is found by

- Tan - 1 [21H1 2
1/(HII - H2 2 ) ] .  (Al)

This angle represents a counterclockwise rotation in the complex (x,y)

plane. The transformation matrix is

r coso eiAsin 0 1
[a] - -iAsino cosO 0 (A2)

0 0 1

where exp(iA) - H12/IH121. The elements of H are updated as follows:

H0, - H 11Cos
2 o + H2 2sin

2 0 + 21H 1 2Icososino

H#2 2 - Hi1sin2
o + H2 2 cos

2
0 - 21H 1 2 Icososino

H 33 - H3 3  (A3)

H12' - (H2 2 - H11 )(H1 2 /IH 1 2I)cososino + H12 (cos
2 

- sin 24) - H 21'* - 0

H 13 - H 13coso + H23 (H12/IH1 2I)sinO - H31'*

H 23 - -H13(H 12-/H 12 I)sinO + H2 3 cos4 - 32'*



2. Rotation in the complex (xz) plane.

The rotation angle 6 required to zero the H13 element is found by

0 - hTan-[21H13 1/(H 11 - H3 3 )] (A4)

This angle represents a clockwise rotation in the complex (x,z) plane. The

transformation matrix is

[ cosa 0 eiB sine]
[a]9 - 0 1 0 (A5)

-e iBsinP 0 cosa J.

where exp(iB) - H1 3/IH13 1. The elements of H are updated as follows:

Hall, - Hilcos28 + H3 3 sin2 0 + 21H 1 3 Icos6sinO

H622' - H22

H03 3 - H11sin 28 + H 33 os2 - 21H 1 3 1cos~sinO (A6)

H6 12' - H12cosa + H2 3 *(H1 3 /IH 1 3 1)sine - H21 '.

H013 ' - (H 33 - H11 )(H1 3 /IH 1 31)cos0sinO + H1 3 (cos26 - sin2O) - H3 1 *'- 0

H02 3' - -H 12*(H 13/IH 1 3 1)sin + H2 3cosO - H32

3. Rotation in the complex (y,z) plane.

The rotation angle 4 required to zero the H23 element is found by

- Tan-1 [21H 2 3 1/(H2 2 - H33)]. (A7)

This angle represents a counterclockwise rotation in the complex (y,z)

plane. The transformation matrix is1 0 0 1
[a] - 0 cOSO eicsin] (A8)

h 0 -eicsin cO o.

where exp(iC) - H 23 /IH 231 . The elements of H are updated as follows:



N22' - H22 Cos 20 + H 3 3 sin
2o + 2IH12 3 IcososinOb

HN33 f - H 22 sin
2o + H33 CaS

20 - 21H 23 Icos'sino~ 
(A9)

N1'- H 12 COSO + H13 (H 23*/ IH23 )Sil4 - zf

Hj#l3 -_H12 (H23/1H 23 I)sint + B13COSO, - H31 '

H-2'- (H 33 H Z2 )(H 23/ IH23 I)cososino~ + H23 (COS
20 sin 2 o) 32H*' -0
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Table I. Gyration tensors g,, for all crystal classes exhibiting natural

optical activity. (Ref. 13)

Biaxial

Triclinic Monoclinic Orthorhombic

1 2 (2 I y) m (m i y) 222 2mm

g 1 1 9 1 2 g 1 31 L g 6 , g 60 2 1  00

92 1 922 923] g Z 1o 31 92
931 932 833 13, 62 933 ~ I 2

Uniaxial

Tetragonal Trigonal and Hexagonal

4, 422 4 42m (2 11 x) 3, 32, 622

9861 0 1 -162 o 961 go 0

Isotropic (without center of symmetry)

Cubic

432, 23

[ 6 g



FIGURE CAPTIONS

Fig. 1. The sense of optical rotation relative to the direction of

propagation k for (a) natural optical activity and (b) Faraday rotation.

Fig. 2. The index ellipsoid cross-section (cross-hatched) that is normal to

the wavevector k and passes through the origin. The principal axes of the

cross-hatched ellipse represent the directions of the allowed linear

polarizations Di and D2. Di, D2, and k form an orthogonal triad.

Fig. 3. Gyration surface for right-handed quartz (class 32). The white

surface depicts right-handed optical rotation with the maximum rotation

occurring for propagation along the optic axis. The dark surface depicts

left-handed rotation with maximum rotation along a direction perpendicular

to the optic axis. There is no optical rotation for propagation -56* from

the optic axis.

Fig. 4. Gyration surface for Faraday active crystals. Maximum optical

rotation occurs for p gation parallel and antiparallel to B. The white

surface depicts rcation of one sense while the dark surface depicts

rotation of -'e opposite sense.

Fig. 5. The flattened helical contour of an elliptically polarized

propagating wave at an instant of time. The radial vectors to the contour

represent the displacement vector D (I k).

Fig. 6. Orthogonal transformation of the (x,y,z) dielectric axes to the

(x'',y'',z'') coordinate system of the wavevector k (z'' 11 k) represented

in polar coordinates (Ok' 6k)"

Fig. 7. The cross-section ellipse of the index ellipsoid in the (x'',y'')

plane. The x''' and y'' axes represent the major axes of the eigen-

polarizations oriented relative to x'' and y''. The two eigenstates have

orthogonal major axes, opposite handedness, and the same ellipticity. The



wavevector k and the z'' axis are normal to the plane of the figure.

Fig. 8. Cartesian complex plane of polarization. Each point in the plane

represents a polarization state. The basis states are the horizontal linear

polarization at the origin and the vertical linear polarization at infinity.

The dashed circle represents the unit circle (unit relative amplitude). The

radial line represents a contour of constant relative phase of W/4.

Fig. 9. A principal transverse crystal orientation of Bi1 2 Si02 0 (BSO). The

external electric field is applied in the [1 1 0] direction, and the

direction of propagation is along [f 1 0]. The (x,y,z) coordinate system

represents the unperturbed dielectric axes. The new coordinate system

resulting from the electro-optic effect is represented by (x',y',z'). The

coordinate system of the wavevector k is given by (x'',y'',z'') with z'' 11k.

Finally, the (x''',y''',z '') coordinate system with z''' i z'' 1 k

represents the principal axis coordinate system of the eigenstates for the

given k.

Fig. 10. Gyration surface for BSO in the (x,z) or (y,z) principal plane.

The dashed circle represents the surface projection with no applied electric

field, and therefore, the optical rotation is invariant with the wavevector

k direction. The solid "heart-shape" contour depicts the the surface when

a field is applied in the [I 1 0] direction. The magnitude of radial

vectors from the origin to the surface is a measure of the optical rotation

per unit length which depends on the direction of k. Note that optical

rotation is not affected by the electric field for propagation in the (x,y)

plane.



OPTICAL ACTIVITY

k

(a)

FARADAY ROTATION

Fig .1



x

D2D

Fig. 2



Fig.3



Fig.4



Fig.5



zz

y

Fig.6



D2,

x

Fig. 7



ImX

IDYl

L6* y 4

IR X

Fig 8



yy

k, z"~--0)

Fi.



Z (k 00)

0 9

(e 8

Fi.1


